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Abstract An architecture is described for 
receive beamforming using sigma-delta 
conversion.  The effects of signal stretching to 
achieve dynamic receive delays are analyzed 
and simulated.  The presented architecture 
provides a simple and effective solution to the 
dynamic receive artifacts. 
 

1. Background 
Sigma-delta (abbreviated SD hereafter) 
conversion is an analog-to-digital conversion 
technology that utilizes oversampling and noise 
shaping.  Oversampling refers to the fact that 
the sampling rate is much higher (e.g. 10 times 
or more) compared to the Nyquist sampling rate, 
while noise shaping refers to the use of few 
quantization bits (e.g. 1~4 bits) with the 
quantization noise energy being pushed away 
from the signal bandwidth in the spectral 
domain.  For example, with a low-pass SD 
converter, the signal’s spectral energy 
concentrates in the low frequency region while 
the spectral energy of quantization noise 
concentrates in the high frequency region.  
Subsequent digital filtering (e.g. low-pass 
filtering) is used to remove the quantization 
noise from the low-bitwidth data stream and 
reconstruct the signal with a higher bitwidth (see 
Figure 1). 

 
Figure 1. Sigma-delta (SD) conversion and digital low-
pass filtering 
 
SD conversion is an increasingly attractive 
technology for use with ultrasonic beamforming, 
due to the advancement of semiconductor 
manufacturing technology that leads to small 

line widths and high operating frequencies.  The 
small time-delay quantization of SD conversion 
reduces and often eliminates the need for 
interpolation filters.  In addition, SD conversion 
offers a trade-off between bandwidth and 
dynamic range that matches the needs of 
ultrasonic imaging in different modes. 
 
However, dynamic receive beamforming 
commonly used in ultrasonic imaging disrupts 
the spectral shaping of quantization noise and 
causes a significant degradation in in-band 
signal-to-quantization-noise ratio (SQNR).  This 
issue has been the subject of several papers 
and patents in recent years [1-3]. 
 

2. Methods 
2.1 Architecture 
A new signal processing architecture was 
developed to address this issue.  After mixing to 
baseband and SD conversion, element signals 
are fed into a delay memory and dynamically 
decimated by LPF1 under the control of dynamic 
receive delays. 

 
Figure 2.  Baseband sigma-delta beamforming 
architecture 
 
The conventional approach of direct sample 
repetition [1] can be viewed as the special case 
of LPF1=1 and decimation rate M=1, whereas 
the full sample reconstruction prior to channel 
summation [2] can be viewed as the special 
case of using LPF1 solely for reconstruction and 
LPF2=1.  Since LPF1 is needed for every 
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channel, there’s a strong motivation to make 
LPF1 as simple as possible, without severely 
degrading the in-band SQNR.  One may 
speculate that the requirement on LPF1’s 
performance is higher for more dynamic signal 
stretching and for higher requirements on 
SQNR. 
 
2.2 Dynamic receive delay 
The purpose of dynamic receive delay is to align 
waveforms generated at a focal point F as it 
moves outward.  For simplicity, let’s consider the 
2-D geometry depicted in Figure 3 (the result is 
applicable to 3-D geometry).  The 2-way 
propagation path length L is given by: 

 
Figure 3.  Geometry for computing dynamic delay 
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Eq. (2) shows that, as 2R increases uniformly 
with time, L increases at a slower rate (except 
for x=0, which corresponds to the element at the 
beam origin).  Since channel signals are 
summed according to the value of L at each 
instant of time during dynamic receive focusing, 
a slower increase rate of L implies that signals 
are stretched by dynamic delay (a fact that can 
also be proven geometrically).  The amount of 
stretching increases with element-beam origin 
distance x and decreases with range R and 
steering angle θ. 
 
Let R=ct/2, L=ct1, where t represents real time, 
and t1 signifies the time instant at which a signal 
sample value is needed for computing 
beamsum, and let R/(2x)=Fnum, we get the 
following expression for stretching ratio: 
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For Fnum=1, the maximum stretching ratio is 
about 1/16th or 6.3%, while for Fnum=2, the 
maximum stretching ratio is 1/64th or 1.6%. 

 
Figure 4.  Plots of signal stretching ratio 
 
Figure 4 shows example plots of signal 
stretching ratio, for Fnum=1 and 2, with an 
aperture size of 20 mm and an imaging range of 
100 mm. 
 
2.3 Analysis of dynamic decimation 
With SD conversion, signals are typically 
sampled at a rate much higher compared to the 
Nyquist sampling rate.  Normal (uniform) 
decimation by M applies a FIR filter 
(corresponding to the LPF1 filter in Figure 2) on 
the SD sequence with a step size of M, whereas 
dynamic decimation (which effectively stretches 
the signal, as discussed above) applies the filter 
with a step size less than or equal to M but treat 
the result as if the filter had been applied with a 
step size of M.  For example, if the decimation 
filter is applied with a step size of M-1, then the 
signal would have been effectively stretched by 
a ratio of 1/M.  Conceptually, one can achieve 
the same effect by applying the filter on the SD 
sequence sample by sample, then repeating 
every (M-1)th sample in the output (thereby 
growing the signal in length), and then uniformly 
decimating the result by M.  By examining the 
spectra during the conceptual intermediate step 
where the samples have been repeated but 
before decimation, we can study the impact of 
sample repetition with filtering by LPF1. 
 
2.4 Simulation Method 
The following steps are followed: 
Step 1. A Gaussian pulse with a specified center 
frequency f0 and -6 dB bandwidth bw is 
computed at a sampling rate fs (200 MHz).  Two 
cases have been considered, with (f0, 
bw)=(2.63, 1.56) MHz and (10, 6.25) MHz, 
respectively.  These are representative of low 
and high operating frequencies of medical 
ultrasound.  The corresponding oversampling 
ratios relative to signal bandwidths are 128 and 
32, respectively. 
Step 2. The pulse is convolved with a Gaussian 
random sequence, sampled at fs and is about 
200 cycles long at f0.  The result of convolution 
is normalized to have an rms amplitude of 0.15 
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to keep the signal amplitude within the range of 
about ±0.5, where ±1 corresponds to the full 
input range of the SD converter. 
 
Step 3. Two small random noise sequences are 
added to the result of Step 2 to provide 
perturbation and simulate 2 different input 
signals.  The amplitude of the random 
sequences is at least 10 dB below the 
quantization noise level. 
 
Step 4. The signals are mixed to baseband 
using quadrature square-wave mixing. 

 
Figure 5. Quadrature square-wave mixing signals 
 
Step 5. The complex signal after mixing is 
converted by a pair of 2nd-order low-pass sigma-
delta converters, with H

∞
 set at 1.5 [4]. 

 
Step 6. The result of Step 5 is passed through 
an LPF1, which is a 3rd-order comb filter with the 
following transfer function: 
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Two values of M have been considered: 8 or 16.  
The corresponding time-domain responses of 
the comb filter are 22 6-bit taps or 46 8-bit taps. 
For comparison, Step 6 is skipped to simulate 
the case of LPF1=1. 
 
Step 7.  The signals are stretched uniformly by 
repeating one sample for every 16 or 64 
samples, which corresponds to the maximum 
stretching for realizing dynamic receive f-
numbers of 1 or 2, as shown by Eq. (3).  They 
are then decimated by 8, 16, or 1, depending on 
which filter was used as LPF1. 
 
Step 8. The signal s and quantization noise n are 
estimated using the following: 
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where s1 and s2 are the results of Step 7. 
 
Step 9. An LPF2 is applied separately to s and n.  
The spectral response of LPF2 is Gaussian 

centered at DC with a -6 dB bandwidth equal to 
the signals bandwidth bw used in Step 1. 
 
Step 10.  The SQNR is estimated as  

20*log10[ rms(s) / rms(n) ]  
where s and n are after the filtering described in 
Step 9 and rms(·) stands for computing the root-
mean-square amplitude of the sequence. 
 

3. Results 
Signal spectra under various processing 
conditions are shown below. 
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Figure 6.  Representative spectra for the wide-band 
simulation with f0=10 MHz and bw=6.25 MHz. 
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In Figure 6, (a) shows the spectra of baseband 
SD conversion and illustrates the effects of 
spectral shaping; (b) shows the effect of direct 
sample repetition (one repetition for every 16 
samples was used here), where we see that 
spectral shaping is nearly wiped out; (c) and (d) 
show the effects of applying a comb filter with 
M=8 and 16, respectively, where we see that 
spectral valleys are created by the filtering; (e) 
and (f) show the effect of sample repetition after 
applying the M=8 and M=16 comb filters, 
respectively, where we see that the in-band 
noise shaping is preserved (more so in (f) than 

in (e)), and that the valleys are filled up.  The 
spectral valleys are important because after 
decimation, these frequency components alias 
into the signal passband, which affects 
particularly the noise amplitude since it’s much 
lower compared to the signal amplitude. 
 
The same processing as described in Section 
2.4 is repeated 100 times using different 
realizations of the random sequences.  The 
average in-band SQNR are summarized in 
Table 1.  The standard deviation of SQNR is 
around 0.4 dB. 

 
Table 1. In-band SQNR under various conditions 

Oversampling ratio (OSR) 32 128  

SQNR after SD conversion (original) 37.7 67.6 (dB) 

Rx Fnum 1 2 ∞ 1 2 ∞  

Maximum signal stretch rate 6.3% 1.6% 0 6.3% 1.6% 0  

Direct sample repetition 10.9 16.2 37.7 16.7 22.4 67.6 (dB) 

Repetition after comb & deci by 8 35.4 37.5 38.6 45.7 52.1 67.7 (dB) 

Repetition after comb & deci by 16 39.6 40.1 40.2 61.6 62.3 67.8 (dB) 

 
4. Discussion 

As shown in Figure 6 and Table 1, direct sample 
repetition causes a significant degradation of in-
band SQNR.  For example, with oversampling 
ratio being 32, the in-band SQNR is significantly 
reduced from the original of 37.7 dB to 10.9 and 
16.2 dB, for rx f-number of 1 and 2, respectively. 
 
With comb filtering, the SQNR degradation due 
to dynamic receive focusing is much reduced.  
For a higher oversampling ratio (OSR), a longer 
comb filter is required to maintain the SQNR.  
For example, with OSR being 32, a comb8 filter 
(M=8) causes an SQNR loss of 2.3 dB and 0.2 
dB, for rx f-number of 1 and 2, respectively.  
However, when OSR is raised to 128, the 
comb8 filter still caused 21.9 and 15.5 dB of loss 
in SQNR, for rx f-number of 1 and 2, 
respectively, whereas with a comb16 filter, 
SQNR losses are correspondingly reduced to 
6.0 and 5.3 dB. 
 
It is noteworthy that the simulated cases 
assumed a constant stretching ratio over the 
entire signal record length.  In actual dynamic 
receive focusing, however, as shown by Eq. (2) 
and Figure 4, the stretching ratio is range 
dependent and is inversely proportional to R2.  
Therefore, for a fixed element location (with a 
fixed x value), the stretch ratio goes down from 

the value given by Eq. (3), so the SQNR values 
shown in Table 1 represent the worst cases. 
 
It is of interest to note that in some cases the 
SQNR after comb filtering and sample repetition 
is higher than the original value.  This happens 
when the comb filter’s passband is comparable 
to signal’s passband.  For example, with fs=200 
MHz and M=16, the comb filter’s -6 dB 
bandwidth is 9.17 (MHz) based on Eq. (4).  This 
is comparable to the signal’s bandwidth (6.25 
MHz) with OSR=32.  Therefore, the gain in 
SQNR is at the expense of some loss in signal 
bandwidth. 
 
In summary, the presented architecture provides 
a simple and effective solution to the dynamic 
receive artifacts associated with sigma-delta 
conversion. 
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