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Abstract 
One of the limitations of current phased array scan- 
ners is that focusing in the slice thickness direction is 
accomplished by a plastic lens with a fixed focus. A 
two-dimensional array can dynamically focus in both 
the slice thickness and imaging directions. In this ar- 
ticle, comparisons are made between fixed-focus linear 
arrays and two-dimensional arrays using beam profiles 
and simulated images. Conclusions are also drawn about 
optimal geometries of 2d arrays. 

1 Introduction 
The advent of digital ultrasound scanners offers the pos- 
sibility of large increases in the number of channels. In 
radiology, these extra channels can impact image quality 
by simply enlarging the aperture. In contrast, the aper- 
ture size is fixed in cardiac imaging. However, improve- 
ments in resolution and contrast can still be obtained 
from apertures with apodizing and dynamic focusing in 
the slice thickness dimension. This work describes how 
the performance of these arrays are simulated. 

First, methods for simulation of beam profiles from 
acoustic radiators are reviewed. We then describe how 
the method chosen was made to work with imaging ar- 
rays. Beam profiles indicating the advantages of two- 
dimensional arrays follow. A computationally efficient 
way of turning these into images is described, and images 
from the simulation are presented. Two-dimensional ar- 
rays can be made in many shapes, so finally we consider 
what the most effective geometry would be. 

2 Modeling acoustic radiators 
To investigate the properties of two-dimensional arrays, 
a computationally efficient three-dimensional simulator 
was required. Since typical imaging pulses are short, a 
time domain approach seemed appropriate. Harris [1,2] 
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has reviewed the classical methods for computing tran- 
sient fields from baWed pistons: the Rayleigh integral, 
the King integral, the Scoch solution, and the convolu- 
tion integral. The method used here interprets the field 
from a plane radiator as a convolution process. The 
pressure p(r ,  t )  can be expressed as the convolution of a 
spatial impulse response h(r ,  t )  and the time response of 
the transducer elements E(t ) :  

p ( r ,  t )  = E(t )  JC h(r, t ) .  (1) 

Piwakowski and Delannoy [3] have published a method 
for efficiently computing h(r, t ) :  

In this equation, h ( t )  is in units of velocity potential di- 
vided by time (Lasota e2 al. [4]). v(z ,y )  is the normal 
component of the velocity of the surface of the trans- 
ducer, d(z,y)  is the time delay at a given point, 0 is 
the angle between the normal to dS’ and the field point, 
a(0) is an inclination factor determined by the bound- 
ary condition, and R is the distance from dS’ to the field 
point r. 

In [3], a discrete representation of h(r,t)  is obtained 
having a simple physical interpretation. Imagine the 
surface of the transducer divided into small areas AS,. 
Each area emits a spherical, impulsive wave, with prop- 
agation time 

t j  = Rj + dj (3) 

to the field point (Rj and d, are discretized versions of 
the variables R and d ( z , y )  above). The amplitude of 
the impulse received at the field point is proportional to 
the velocity of the elemental area v j ,  and also to 1/Rj. 
Piwakowski and Delannoy show that if the number of 
elemental areas is high enough, a band-limited approx- 
imation to the acoustic field can be obtained by sum- 
ming the effect of each area in the radiator. In software, 
a vector is set up to  represent the impulse response as 
a function of time. The time t j  is calculated for each 
elemental area on the transducer, and this specifies the 
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point on the vector to which AS, contributes. That el- 
ement of the impulse response vector is incremented by 
v ,a /R, .  This method of computing the integral has the 
virtues of speed and intuitive simplicity. 

The dimensions of a physical phased array are speci- 
fied in ~ ( z ,  y): this matrix has zero entries for positions 
on the integration grid outside the transducer. A con- 
stant F-number can be maintained by changing ~ ( z ,  y) 
as a function of range. The effects of apodizing, shad- 
ing, and also tolerances in scanner electronics are mod- 
eled with u(z,y). The simulation uses an integration 
grid substantially finer than the pitch of the transducer 
elements: this allows the response of each element to 
be included in the beam profile data. The “inclination 
factor ,” a consequence of operating the high-impedance 
transducer into a comparatively low-impedance material 
(tissue), is modeled by a(e) in (2). 

Steering and focusing information is encoded in the 
delay array d(z ,  y). In the one-dimensional case, a plas- 
tic lens in the slice thickness (y) direction is simulated 
by a fixed focus delay: 

Al(y) = &L V S  [ ,/q - 11 . (4) 

V, is the speed of sound in tissue. In a two-dimensional 
array, the y focal length fy can be varied dynamically. 
The beam can also be steered in the y direction if there 
are enough elements. In the imaging direction, the beam 
steering and focusing is done with the standard parabolic 
approximation [5] : 

(5) 
1 X 2  

At(z )  = -(-z sin 0 + - cos2 e), 
V. 2fz 

where fz is the focal length. The effects of tap lengths 
in delay lines can be studied by quantizing the entries 
in the matrix d(z ,  y). 

Once the impulse response is calculated, the convolu- 
tion of equation (1) is performed with FFTs. The result 
is a pressure array for each field point. The maximum 
absolute value is used in the beam plots. 

3 Beam profiles 
Figure 2 shows graphs for a 128 element one-dimensional 
transducer at ranges of 20 mm and 120 mm. In this case, 
the array is a 30 mm square, and the frequency is 3.5 
MHz.  The transducer performs poorly a t  close range. 
The outer elements are not used at  20 mm because the 
F-number is held constant at  2. This is necessary in 
order for the scanner delays to  be computed using a 
parabolic approximation. But these plots only tell half 
the story. The y coordinate is fixed at zero for both 

one-dimensional array 
64 elements, 14 mm square 

two-dimensional array 
128 elements, 64 in center portion 

Figure 1: Arrangement of elements in the one- 
dimensional and two-dimensional arrays used in simu- 
lating the images. Both arrays are 14 mm in each di- 
mension. 

plots. The real situation is made substantially worse by 
the inability of the one-dimensional array to maintain 
an adequately narrow beam width in the slice thickness 
dimension, both close to  and far from the transducer. 
The voxel size increases greatly as the fixed y lens goes 
out of focus. A simple twedimensiond array, such as 
the one shown in figure 1, while inadequate for beam 
steering, can make a great difference to the resolution by 
providing dynamic focusing and apodizing. This array 
geometry has the advantage that the lateral cuts are no 
harder than for a one-dimensional array. 

The one-dimensional array to be simulated in the next 
section has 64 elements, and is 14 mm square. The tim- 
ing of the voltages applied to the elements achieves fo- 
cusing and beam-steering in the normal way. The two- 
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is the position of the transducer and r’ is the position in 
the tissue. In this approximation, the receiver sensitivity 
is P(r - r‘, w ) ,  so the aperture response is 

Figure 2: Beam profiles for a 128 element array at 20mm 
and 120mm 

dimensional array has 64 elements in the central portion, 
and two outer banks of 32 elements. These are driven 
with different phasing to  the central elements, which al- 
lows dynamic focusing to  take place. Its longest dimen- 
sion is also 14 mm, making it suitable for cardiology 
work. The element pitch is constant in both cases, at 
X/2. In the y direction, this array is very under-sampled, 
and exhibits severe sidelobes, which become worse if the 
array is steered. Therefore, it is always operated with 
focusing delays only. 

4 Making images 
A full-scale simulation of a B-scanner is a very com- 
putationally expensive task. The following method was 
developed to allow the effect of the changes in beam pat- 
terns to be expressed as images using a standard work- 
station. This model ignores multiple scattering in t i s  
sue, and performs scanning in an idealized fashion. The 
beam is calculated for one focal length and and steer- 
ing direction, and scanning consists of translating this 
pattern p ( r , t )  in space. This requires only one beam 
calculation, and reduces image-making to  a simple con- 
volution. All images reported here use a C-scan format. 
Refraction of the beam in the tissue is also ignored. 

Let s(r) be the scattering function of the tissue, and 
S(k) its Fourier transform. Also, define P(r,w) to be the 
temporal transform of p ( r ,  2) .  Consider first the response 
of the tissue to continuous wave insonation. The effect 
of the transmitted sound beam is to turn the tissue into 
an array of sources of strength P(r- r’,w)s(r’), where r 

u(r, w )  = Pz(r - r’, w)s(r’)d3r/, ( 6 )  

and the RF time waveform fiom the transducer using 
pulsed excitation is 

u(r, t )  = U(r, w ) e j u * h .  (7) J 
If we define the self-convolution of p(r,t) as c(r,t): 

c(r,t) = p(r,t’)p(r,t - t’)dt’, (8) J 
then 

(9) 

In (9), u(r,t) can be calculated rapidly by taking the 
three-dimensional spatial transform of c(r, t ) ,  squaring, 
multiplying by the three-dimensional transform of s(r) 
and inverse transforming: 

u ( r , t )  = F’-’[C(k,t)S(k)].  (10) 

Here C( k, 2)  is the three-dimensional spatial transform 
of c(r,t). In practice, this only needs to be evaluated 
at the round-trip time for the sound pulse. An image 
can then be formed by taking a slice through u(r,t), for 
example in the y = 0 plane. 

Figures 3 and 4 show images of a “cyst” using the one- 
dimensional and two-dimensional transducers of figure 1. 
The tissue was modeled as a collection of random scat- 
terers, and the scattering amplitude in the cyst was 40 
dB below that of the tissue. The field of view is 22 mm 
x 22 mm, and the cyst is 0.25 mm in the slice thickness 
dimension. The range was 20 mm, and the frequency of 
operation 3.5 MHz. The cyst is better resolved with the 
two-dimensional array. 

The contrast-to-noise ratio, defined as 

where U denotes standard deviation, was 0.22 for 
the one-dimensional transducer and 3.3 for the two- 
dimensional transducer. This is an extreme case, but 
similar improvements can be expected in the 130-200 
mm range with tissue structures that are thin in the 
slice thickness dimension. 
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Figure 3: Image of cyst with one-dimensional transducer 
(22 mm field of view, 3.5MHz) 

Figure 4: Image of same cyst at  3.5 MHz with two- 
dimensional transducer 

Figure 5 :  Contour map of resolution of 2d arrays. The 6 
dB beam area (in mm2) is plotted as a function of focal 
length and array geometry 

5 Optimizing 2d array geome- 
tries 

Given the cross-shaped design of the 2d array, what sizes 
should the panels of elements be? For example, what is 
the optimal width of the central bank of 64 elements? 
Beam profiles were calculated in the x and y dimen- 
sions for various widths, and the 6 dB beam area was 
computed. The results are plotted in Figure 5 .  All cal- 
culations were done with dynamic focusing in x and y; 
using receive-only beam patterns. The simulation also 
included a realistic phase slip accuracy, and a variation 
in sensitivity of transducer elements of f l d B .  

Since the array under consideration is 14 mm square, 
the right-hand side of the contour map is close to a 
one-dimensional array. It performs poorly at  large and 
small focal lengths. The left-hand side has two wide 32- 
element banks, and a thin strip of 64 elements in the 
center. The apodizing causes this arrangement to work 
well at  close range. However, the beam spreads badly 
far from the transducer. The optimal size of the central 
elements can be seen to  be around 8.5 - 9.0 mm. A 9 
mm size corresponds to a Fresnel lens with a focal length 
of 92 mm: at  that range, the phase change between y 
elements is ir. 
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6 Conclusions 
The results presented show that substantial improve- 
ments in image quality can be obtained with simple 
two-dimensional transducer arrays. An array with only 
three elements in the slice thickness direction is much 
better a t  controlling the size of the beam close to, and 
far from, the transducer. Potential applications would 
include cardiac scanning on a 128 channel system. With 
channel counts in the 128-512 range, it is impossible to 
approach Nyquist sampling in both directions and main- 
tain an adequately large aperture. We have therefore 
concentrated on arrays with A/2 sampling in x and gross 
undersampling in y, foregoing steering in y. When more 
channels are available, beam-steering in the slice thick- 
ness dimension y will become feasible. Imaging will then 
be possible in any scan plane, as in NMR. 
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